
LINGUA
An invitation to a project

The book "A Denotational Engineering of Programming Languages"
and selected research papers available on

http://www.moznainaczej.com.pl/denotational-engineering

Andrzej Blikle

January 4th, 2025

This presentation by Andrzej Blikle is licensed under a Creative Commons Uznanie autorstwa Użycie

niekomercyjne Bez utworów zależnych 3.0 Unported License.5

http://www.moznainaczej.com.pl/denotational-engineering
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Our goals

Jan 4, 2025 2A.Blikle - an invitation to project LINGUA

To improve the quality of programs
To lower the costs of program testing and maintenance

• Edsger Dijkstra (1968, 1976),

• Andrzej Blikle (1978),

• K. Rustan M. Leino (2008)

Dafny project

testing proving correct building correct

• cost-intensive
• leaves bugs

• proof are longer
than theorems

• programs to be
proved are not
correct

correct by
construction

programs are
developed in a way
that guarantees
their correctness

Bridges, airplanes, cars,…
are built in this way

Two aspects of the quality of programs

Jan 4, 2025 3A.Blikle - an invitation to project LINGUA

1. a consistency of program specification
with user expectations,

2. a consistency of a program
with its specification.

Current area of LINGUA project. My field of
Research since 1980's.

It may be a future area of LINGUA project.

What do we need to realize our goal?

Jan 4, 2025 4A.Blikle - an invitation to project LINGUA

A programming language with

mathematical semantic.

Correctness preserving construction rules

for programs in such a language.

We choose
denotational
semantics

They must be proved
sound (correct)

S(P ■ Q) = S(P) ● S(Q)

Can we write a denotational semantics for an

arbitrary programming language?

Jan 4, 2025 5A.Blikle - an invitation to project LINGUA

My hypothesis
For the majority of languages (e.g. Python, Java,…) – probably not;
at least not in a direct way (see later).

A historical approach to defining a semantics of a language:
define a semantics for a given syntax.

When people started to think about semantics (around 1970),
syntaxes were already there!

For sure it hasn't been done so far!

Programs were seen as commands for computers
rather than

as descriptions of mathematical beings (semantical meanings).

Let's reverse the way

from syntax to denotations

Jan 4, 2025 6A.Blikle - an invitation to project LINGUA

First, decide WHAT we are going to talk about:
the denotations of expressions, instructions, declarations etc.

Then, decide HOW we are going to talk about these meanings.

syntax

a world
of meanings

denotational
semantics

half
algorithmic

CREATION

creation

a
u
to

m
a
ti
c

Our experimental

language LINGUA

Denotational Engineering

defined in MetaSoft

techniques of
software

development

Jan 4, 2025 7A.Blikle - an invitation to project LINGUA

Where are we in the quality chain of software

production?

client

programmer

compiler

hardware
and OS

process actors

communication
languages

Informal
contract

binary code

C++,
LINGUA

Our project

Why these limitations in LINGUA?
• Our field of competence
• A lot of existing research
• Compilers, OS, and hardware

have been well tested

Domain Specific Languages
may be built using

Denotational Engineering

The state of the art of the project
(a theoretical background)

Jan 4, 2025 8
A.Blikle - an invitation to project LINGUA

a methodology of
designing

programming languages

a methodology
of programming

from denotations
to syntax

LINGUA
correct by construction

statically typed

object oriented

API for SQL

concurrency (simp. Petri nets)

Documented in:
A Denotational Engineering of
Programming Languages
(a book in statu nascendi) error elaboration

An experimental
interpreter

What is to be done in software?

Jan 4, 2025 9A.Blikle - an invitation to project LINGUA

An ecosystem
for language
designers

Intelligent editor for MetaSoft

Denotations ➔ Abstract syntax

Generator of parsers

Generator of implementations

Generator of ecosystems for
programmers

Abstract syntax ➔ Concrete synt.

Concrete synt. ➔ Colloquial synt.

What is to be done in software (cont.)?

Jan 4, 2025 10A.Blikle - an invitation to project LINGUA

An ecosystem
for

programmers

Intelligent editor, e.g. in VSC

Constructor of programs

Interpreter or compiler

Specialized theorem prover

Axioms of D-theory

Theorems of D-theory

Lemmas for current program

Experiments in specific
areas of applications

The choice
and completion

of Lingua variant

Chicken OR egg dilemma

Jan 4, 2025 11A.Blikle - an invitation to project LINGUA

An ecosystem
for language
designers

LINGUA

?

What remains to be done in theory
(some examples)

Jan 4, 2025 12A.Blikle - an invitation to project LINGUA

▪ models for script language; HTML, TEX,…
▪ more about concurrency,
▪ polymorphic types,
▪ development of "practical" program-construction rules,
▪ domain specific languages in Lingua family; e.g., for

microprogramming,
▪ …

A possible business model of a (future) enterprise

Jan 4, 2025 13A.Blikle - an invitation to project LINGUA

My current vision of a future business model:
▪ LINGUA + ecosystems available free in public domain,
▪ open access for all but open sources for a selected group,
▪ monetization:

▪ installation and maintenance of tools,
▪ education,
▪ production of reliable software,
▪ …

Currently project is being developed in a
non-institutional (informal) way

and without any budget.

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 14

A TOY EXAMPLE

OF A LANGUAGE

DESIGN

Our method bases on
many-sorted algebras

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 15

BAD NEWS
This theory is technically a little complicated.

GOOD NEWS
You do not need to master it very deeply.

Preliminary notations
MetaSoft

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 16

Sets (domains) and functions

A x B the Cartesian product of sets A and B

A | B the union of sets A and B

a : A element a belongs to set A

A → B the set of all partial functions from A to B

A ⟼ B the set of all total functions from A to B

A ⟹ B the set of all finite functions from A to B

f : A → B function f is a partial function from A to B

Abstract errors

Errors = {'division by zero', 'types not compatible', 'variable not declared, …}

DomainE = Domain | Error

elm : Domain = … elm (element) is a metavariable running over Domain

f.a.b.c = ((f.a).b).c

Sets in the theory of denotational semantics are traditionally called domains.

Many-sorted algebras intuitively

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 17

The algebra of denotations

1 : ⟼ NumE

+ : NumE x NumE ⟼ NumE

/ : NumE x NumE ⟼ NumE

= : NumE x NumE ⟼ BoolE

< : NumE x NumE ⟼ BoolE

tt : ⟼ BoolE

not : BoolE ⟼ BoolE

or : BoolE x BoolE ⟼ BoolE

The algebra of syntax

1 : ⟼ NumExp

+ : NumExp x NumExp ⟼ NumExp

/ : NumExp x NumExp ⟼ NumExp

= : NumExp x NumExp ⟼ BoolExp

< : NumExp x NumExp ⟼ BoolExp

tt : ⟼ BoolExp

not : BoolExp ⟼ BoolExp

or : BoolExp x BoolExp ⟼ BoolExp

signature signature

similar

algebras

carier carier

constructor

All elements of NumExp are(by def.)

reachable and are expressions like:

1+(1/(1+1))

The reachable elements of Num

are

all positive rational numbers

A toy example,
part 1

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 18

Algebra (grammar) of abstract syntax

Ide = {x, y, z,…}

Exp = var(Ide) | plus(Exp, Exp) | divide(Exp, Exp)

Ins = assign(Ide, Exp) | compose(Ins, Ins)

Carriers Algebra of denotations

Ide = {x, y, z,…}

ExpDen = State → NumE

InsDen = State → State

Constructors

ide : ⟼ Ide for all ide : Ide

var : Ide ⟼ ExpDen

plus : ExpDen x ExpDen ⟼ ExpDen

divide : ExpDen x ExpDen ⟼ ExpDen

assign : Ide x ExpDen ⟼ InsDen

compose : InsDen x InsDen ⟼ InsDen

Semantics of abstract syntax (As)

Sid : Ide ⟼ Ide identity

Sex : Exp ⟼ ExpDen

Sin : Ins ⟼ InsDen

State = Ide ⟹ Num

ALGORITHM

ALGORITHM

From denotations to syntax and semantics

A toy example,
part 2

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 19

Sid : Ide ⟼ Ide identity

Sex : Exp ⟼ ExpDen ExpDen = State → NumE

Sin : Ins ⟼ InsDen InsDen = State → State

Sex.[divide(Exp-1, Exp-2)] =

 divide.[Sex.[Exp-1], Sex.[Exp-2]]

Sex.[divide(Exp-1, Exp-2)].sta =

 Sex.Exp-2.sta = 0 ➔ 'division-by-zero'

 true ➔ Sex.Exp-1.sta / Sex.Exp-2.sta

constructor of denotations

arithmetical operation

(from implementation platform)

implementor-oriented definition

programmer-oriented definition

The unique (!) semantics of abstract syntax

A toy example,
part 3

Jan 4, 2025
A.Blikle - an invitation to project LINGUA 20

Algebra (grammar) of concrete syntax

Ide = {x, y, z,…}

Exp = Ide | (Exp + Exp) | (Exp / Exp)

Ins = Ide := Exp | Ins ; Ins

Algebra (grammar) of colloquial syntax

Ide = {x, y, z}

Exp = Ide | (Exp + Exp) | (Exp / Exp)

 Exp + Exp | Exp / Exp

Ins = Ide := Exp | Ins ; Ins

There is no denotational semantics

for this colloquial syntax (grammar)!

not acceptable ambiguity

CREATION

assisted

CREATION

assisted

acceptable

ambiguity

(associativity)

Algebra (grammar) of abstract syntax

Ide = {x, y, z,…}

Exp = var(Ide) | plus(Exp, Exp) | divide(Exp, Exp)

Ins = assign(Ide, Exp) | compose(Ins, Ins)

From abstract to colloquial syntax

A model with a colloquial syntax

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 21

Reachable

part

Algebra

of abstract syntax

Algebra

of concrete

syntax

algorythmcreation

AsCo

S = Co-1 ● As

Colloquial

syntax

a restoring transformation

(is not a homomorphism)

Algebras of

syntax are

reachable by def.

Algebra of
denotations

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 22

A TOY EXAMPLE

OF A PROGRAM

DEVELOPMENT

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 23

Installing an appliance on an engine

pre x,k is nnint :

 x := 0;

 while x+1 ≤ k

 do x := x+1 od

post x = k

Step 1: A trivial search engine

(linear search for number k)

Step 2: a slow program

pre x,n is nnint :

 x := 0;

 asr x,n is nnint

 while (x+1)2 ≤ n

 do x := x+1 od

 rsa

post x = isrt(n)

x+1 ≤ isrt(n) ≡ (x+1)2 ≤ n whenever x,n are nnint

If we wish to speed up our

program, we have to change the

engine.

A

pre x,n is nnint :

 x := 0;

 while x+1 ≤ isrt(n)

 do x := x+1 od

post x = isrt(n)

Step 2: A trivial program

installing

an appliance

Def: isrt(n)2 ≤ n < (isrt(n)+1)2

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 24

The derivation of Dahl's integer square root (1)
(deriving a logarithmic search engine)

The magnitude of k: If 2m ≤ k < 2m+1 then mag.k = 2m e.g. mag.11 = 8

Def: po2.k iff (∃m≥0) k=2m : k is a power of 2

Q1: pre x,k,z is nnint :

z := 1;

asr x,k,z is nnint and po2.z :

while z ≤ k do z:=2*z od

rsa

 post x,k,z is nnint and z = 2*mag.k

searches for 2*mag.k e.g. 2*mag.11 = 16

A

Q2: pre x,k,z is nnint and z = 2*mag.k:

 x := 0;

 while z > 1

 do

 z := z/2;

 if x+z ≤ k then x:=x+z fi

 od

 post x = k and z = 1

k = 11

2*mag.11 = 16

11 = 1*8 + 0*4 + 1*2 + 1*1

combine these programs

sequentially

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 25

The derivation of Dahl's integer square root (2)
(with a logarithmic search engine)

Q3: pre x,k,z is nnint : a "pure" search engine

 z := 1;

 x := 0;

 asr x,k,z is nnint and po2.z :

 while z ≤ k do z:=2*z od ;

 while z > 1

 do

 z := z/2;

 if x+z ≤ k then x:=x+z fi

 od

 rsa

 post x = k and z = 1

Replace k by isrt(n) and use

z ≤ isrt(n) ≡ z2 ≤ n whenever z,n is nnint

x+z ≤ isrt(n) ≡ (x+z)2 ≤ n whenever z,n,x is nnint

A

the range of an

assertion

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 26

The derivation of Dahl's integer square root (3)
(with a logarithmic search engine)

pre z,x,n is nnint:

 z := 1;

 x := 0

 asr z,x,n is nnint and po2.z :

 while z2 ≤ n do z:=2*z od

 while z > 1

 do

 z := z/2;

 if (x+z)2 ≤ n then x:=x+z fi

 od

 rsa

post x = isrt(n) and z = 1

Q4:

First introduce new variable q with q=z2 to avoid the recalculation of z2

We shall optimize this program by eliminating both square operations.

Jan 4, 2025 A.Blikle - an invitation to project LINGUA 27

The derivation of Dahl's integer square root (11)
(with a logarithmic search engine)

pre n, q, y, p is nnint:

 q := 1;

 while q ≤ n do q:=4*q od

 y:= n;

 p:= 0;

 while q > 1

 do

 q:=q/4;

 if p+q ≤ y

 then p:=p+q; y:=y-p-q

 else p:=p/2

 fi

 od

post p=isrt(n)

Q10:

This is the Ole Dahl's program.

A

The used operations are easily

implementable in binary arithmetic.

In 7 more

steps

Jan 4, 2025 A.Blikle - an invitation to project LINGUA
28

THANK YOU FOR

YOUR PATIENCE

You can write to me:
andrzej.blikle@moznainaczej.com.pl

	Slajd 1: LINGUA An invitation to a project The book "A Denotational Engineering of Programming Languages" and selected research papers available on http://www.moznainaczej.com.pl/denotational-engineering
	Slajd 2: Our goals
	Slajd 3: Two aspects of the quality of programs
	Slajd 4: What do we need to realize our goal?
	Slajd 5: Can we write a denotational semantics for an arbitrary programming language?
	Slajd 6: Let's reverse the way from syntax to denotations
	Slajd 7
	Slajd 8: The state of the art of the project (a theoretical background)
	Slajd 9: What is to be done in software?
	Slajd 10: What is to be done in software (cont.)?
	Slajd 11: Chicken OR egg dilemma
	Slajd 12: What remains to be done in theory (some examples)
	Slajd 13: A possible business model of a (future) enterprise
	Slajd 14
	Slajd 15: Our method bases on many-sorted algebras
	Slajd 16: Preliminary notations MetaSoft
	Slajd 17: Many-sorted algebras intuitively
	Slajd 18: A toy example, part 1
	Slajd 19: A toy example, part 2
	Slajd 20: A toy example, part 3
	Slajd 21: A model with a colloquial syntax
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28

